skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Ah-Hyung Alissa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2capture behavior and transport properties of these electrolytes after CO2capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2capture. Quantitative13C NMR spectra collected at variable temperatures reveal that absorbed CO2exists as carbamates (RHNCOOor RR′NCOO) and carbonate/bicarbonate (CO32−/HCO3). The transport properties of PEI and NOHM-I-PEI studied using1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction. 
    more » « less
  2. Ever-increasing anthropogenic CO 2 emissions have required us to develop carbon capture, utilization, and storage (CCUS) technologies, and in order to address climate change, these options should be at scale. In addition to engineered systems of CO 2 capture from power plants and chemical processes, there are emerging approaches that include the Earth (i.e., air, Earth, and ocean) within its system boundary. Since oceans constitute the largest natural sink of CO 2 , technologies that can enhance carbon storage in the ocean are highly desired. Here, we discuss alkalinity enhancement and biologically inspired CO 2 hydration reactions that can shift the equilibrium of ocean water to pump more carbon into this natural sink. Further, we highlight recent work that can harvest and convert CO 2 captured by the ocean into chemicals, fuels, and materials using renewable energy such as off-shore wind. Through these emerging and innovative technologies, organic and inorganic carbon from ocean-based solutions can replace fossil-derived carbon and create a new carbon economy. It is critical to develop these ocean-based CCUS technologies without unintended environmental or ecological consequences, which will create a new engineered carbon cycle that is in harmony with the Earth’s system. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The rapidly accumulating amounts of waste electrical and electronic equipment (WEEE) is one of the biggest environmental concerns in modern societies, and this problem will be further accelerated in the future. The use of supercritical CO2 (scCO2) mixed with acids has been proposed as a greener solvent system compared to conventional cyanide and aqua regia solvents, however, the mechanisms of scCO2 in metal extraction from WEEE are still poorly understood. Thus, this study focused on the physical, structural, and chemical interactions between scCO2/acid solvents and complex layered components in waste printed circuit boards (WPCBs), one of the common WEEEs. Our study showed that the use of scCO2-based pretreatment allows faster leaching of metals including copper (Cu) in the subsequent hydrometallurgical process using H2SO4 and H2O2, while allowing gold (Au) recovery as hydrometallurgically delaminated solids. This enhancement is due to the selective leaching of Ni and unique inner porous structures created by ScCO2/acid treatment via dissolving the Ca-silicate-bearing fiberglass within the WPCB. Thus, the scCO2-based pretreatment of WPCBs shows a multifaceted green chemistry potential relating to the reduction in solvent usage and targeted recovery of Au prior to shredding or grinding that would reduce any loss or dilution of Au in the subsequent waste stream. 
    more » « less